Mobiliser les approches issues de l’Intelligence Artificielle (IA) en Santé Animale (SA) permet d’aborder des problèmes de forte complexité logique ou algorithmique tels que rencontrés en épidémiologie quantitative et prédictive, en médecine de précision, ou dans l’étude des relations hôtes × pathogènes. L’IA peut dans certaines situations faciliter le diagnostic et la détection de cas, fiabiliser les prédictions et réduire les erreurs, permettre des représentations plus réalistes et lisibles par des non informaticiens de systèmes biologiques complexes, accélérer les décisions, améliorer la précision des analyses de risque et permettre de mieux cibler les interventions et d’en anticiper les effets. De plus, les fronts de science en SA engendrent de nouveaux challenges pour l’IA, du fait de la spécificité des systèmes, des données, des contraintes, et des objectifs d’analyse. Sur la base d’une revue de la littérature à l’interface entre IA et SA couvrant la période 2009-2019, et d’entretiens conduits avec des chercheurs français positionnés à cette interface, cette synthèse explicite les grands domaines de recherche en SA dans lesquels l’IA est actuellement mobilisée, comment elle contribue à revisiter les questions de recherche en SA et lever des verrous méthodologiques, et comment des questions de SA stimulent de nouveaux travaux en IA. Après avoir présenté les freins et leviers possibles, nous proposons des recommandations pour se saisir au mieux de l’enjeu que représente cette interface SA/IA.
La diminution du nombre de prairies, que l’on observe à l’échelle mondiale depuis plusieurs décennies, s’est accompagnée de l’évolution de leur mode de gestion dans un contexte d’intensification de l’usage des terres. Face aux enjeux que ces changements impliquent, tant...
Research on next generation agricultural systems models shows that the most important current limitation is data, both for on-farm decision support and for research investment and policy decision making. One of the greatest data challenges is to obtain reliable data...
Crop surface models (CSMs) representing plant height above ground level are a useful tool for monitoring in-field crop growth variability and enabling precision agriculture applications. A semiautomated system for generating CSMs was implemented. It combines an Android application running on...
Recently, Agricultural Knowledge and Innovation Systems (AKISs) have gained considerable attention in scientific and political forums in the European Union (EU). AKIS is considered a key concept in identifying, analysing and assessing the various actors in the agricultural sector as...
Agricultural knowledge and innovation system (AKIS) has a strong potential to enhance economic performance of farming and contribute to agricultural sustainability, as it may increase synergies and complementarity among actors. This paper is aimed to develop a proposed framework to...