Mobiliser les approches issues de l’Intelligence Artificielle (IA) en Santé Animale (SA) permet d’aborder des problèmes de forte complexité logique ou algorithmique tels que rencontrés en épidémiologie quantitative et prédictive, en médecine de précision, ou dans l’étude des relations hôtes × pathogènes. L’IA peut dans certaines situations faciliter le diagnostic et la détection de cas, fiabiliser les prédictions et réduire les erreurs, permettre des représentations plus réalistes et lisibles par des non informaticiens de systèmes biologiques complexes, accélérer les décisions, améliorer la précision des analyses de risque et permettre de mieux cibler les interventions et d’en anticiper les effets. De plus, les fronts de science en SA engendrent de nouveaux challenges pour l’IA, du fait de la spécificité des systèmes, des données, des contraintes, et des objectifs d’analyse. Sur la base d’une revue de la littérature à l’interface entre IA et SA couvrant la période 2009-2019, et d’entretiens conduits avec des chercheurs français positionnés à cette interface, cette synthèse explicite les grands domaines de recherche en SA dans lesquels l’IA est actuellement mobilisée, comment elle contribue à revisiter les questions de recherche en SA et lever des verrous méthodologiques, et comment des questions de SA stimulent de nouveaux travaux en IA. Après avoir présenté les freins et leviers possibles, nous proposons des recommandations pour se saisir au mieux de l’enjeu que représente cette interface SA/IA.
La diminution du nombre de prairies, que l’on observe à l’échelle mondiale depuis plusieurs décennies, s’est accompagnée de l’évolution de leur mode de gestion dans un contexte d’intensification de l’usage des terres. Face aux enjeux que ces changements impliquent, tant...
Agriculture is an essential component of food security, sustainable livelihoods, and economic development in sub-Saharan Africa (SSA). Smallholder farmers, however, are restricted in the number of crops they can grow due to small plot sizes. Agriculture inputs, such as fertilizers,...
Weeds are among the most harmful abiotic factors in agriculture, triggering significant yield loss worldwide. Remote sensing can detect and map the presence of weeds in various spectral, spatial, and temporal resolutions. This review aims to show the current and...
In this paper, results from a study on the use of improved coffee production technology schemes among smallholder coffee producers in three prominent coffee producing regions in Honduras are presented. The impact of various schemes (trajectories) in which different agents...
Mixed family farms produce almost half of the world food. Increasing food supply in developing countries requires increasing productivity of both land and farmers’ labour as key to increase household income, food security and reduce poverty. A research project developed...