Mobiliser les approches issues de l’Intelligence Artificielle (IA) en Santé Animale (SA) permet d’aborder des problèmes de forte complexité logique ou algorithmique tels que rencontrés en épidémiologie quantitative et prédictive, en médecine de précision, ou dans l’étude des relations hôtes × pathogènes. L’IA peut dans certaines situations faciliter le diagnostic et la détection de cas, fiabiliser les prédictions et réduire les erreurs, permettre des représentations plus réalistes et lisibles par des non informaticiens de systèmes biologiques complexes, accélérer les décisions, améliorer la précision des analyses de risque et permettre de mieux cibler les interventions et d’en anticiper les effets. De plus, les fronts de science en SA engendrent de nouveaux challenges pour l’IA, du fait de la spécificité des systèmes, des données, des contraintes, et des objectifs d’analyse. Sur la base d’une revue de la littérature à l’interface entre IA et SA couvrant la période 2009-2019, et d’entretiens conduits avec des chercheurs français positionnés à cette interface, cette synthèse explicite les grands domaines de recherche en SA dans lesquels l’IA est actuellement mobilisée, comment elle contribue à revisiter les questions de recherche en SA et lever des verrous méthodologiques, et comment des questions de SA stimulent de nouveaux travaux en IA. Après avoir présenté les freins et leviers possibles, nous proposons des recommandations pour se saisir au mieux de l’enjeu que représente cette interface SA/IA.
La diminution du nombre de prairies, que l’on observe à l’échelle mondiale depuis plusieurs décennies, s’est accompagnée de l’évolution de leur mode de gestion dans un contexte d’intensification de l’usage des terres. Face aux enjeux que ces changements impliquent, tant...
Background: Up to now, efforts to help local communities out of the food-insecurity trap were guided by researcher (or other actors)-led decisions on technologies to be implemented by the communities. This approach has proved inefficient because of low adoption of...
Networks and partnerships are commonly-used tools to foster knowledge sharing between actors and organisations in the Agricultural Knowledge and Innovation System (AKIS), but in Europe the policy emphasis on including users, such as farmers and foresters, is relatively recent. This...
This article proposes a novel conceptualization of knowledge-intensive innovative entrepreneurship, which can capture the main characteristics of a vital phenomenon in the modern economy. Our conceptualization is based upon the integration of Schumpeterian entrepreneurship, evolutionary economics, and innovation systems approach....
This study aims to clarify the Japanese characteristics of the spread of smart agriculture utilizing digital technology, which is expected to spread worldwide, and to provide policy implications for further dissemination of the technology. We conducted a questionnaire survey on...