Citizen science is the involvement of citizens, such as farmers, in the research process. Citizen science has become increasingly popular recently, supported by the proliferation of mobile communication technologies such as smartphones. However, citizen science methodologies have not yet been widely adopted in agricultural research. Here, was conducted an online survey with 57 British and French farmers in 2014.
This material was presented duting the conference: Big Data, a multiscale solution for a sustainable agriculture in Copenhagen Denmark in 2017 and brings an overview of the technological innovations of the French agricultural sector.
Agricultural machinery manufacturers historically referred to the intermediate players for selling, maintenance, customer service and/or training of equipment appear to interact with farmers and end-users. Intermediate players have therefore faced the burden to master the technology, in constant evolution, and the associated training needs at the interface between sophisticated equipment and the end-user and its sociological characteristics (age, education, background, etc.).
Description du sujet. Une approche système basée sur la co-conception et l’évaluation expérimentale in situ de prototypes de systèmes de culture (SDC) a été mise en œuvre dans le projet INRA « GeDuNem » pour une gestion durable des nématodes à galles (NG) dans les systèmes maraîchers sous abris.
L’une des avancées les plus importantes dans le domaine de l’observation de la terre est la découverte des indices spectraux, ils ont notamment prouvé leur efficacité dans la caractérisation des surfaces agricoles, mais ils sont généralement définis de manière empirique. Cette étude basée sur l’intelligence artificielle et le traitement du signal, propose une méthode pour trouver un indice optimal. Et porte sur l’analyse d’images issues d’une caméra multi-spectrale, utilisée dans un contexte agricole pour l’acquisition en champ proche de végétation.
Mobiliser les approches issues de l’Intelligence Artificielle (IA) en Santé Animale (SA) permet d’aborder des problèmes de forte complexité logique ou algorithmique tels que rencontrés en épidémiologie quantitative et prédictive, en médecine de précision, ou dans l’étude des relations hôtes × pathogènes.
Le projet RIVAGE veut favoriser l’adoption de pratiques alternatives pour gérer les impacts de la pollution diffuse dans le bassin versant de la rivière Pérou en Guadeloupe. Son objectif est de produire et partager les connaissances sur les processus, les impacts et les pratiques innovantes avec les acteurs du territoire. Pour faciliter la prise en compte des résultats, le projet a créé une « école-acteurs ». L’école-acteurs est un espace d’échanges autour des thématiques liées à la pollution diffuse agricole.
L’herbe pâturée est l’aliment qui coûte le moins cher dans une ration et la bonne gestion de l’herbe passe entre autre par une connaissance des quantités disponibles. Afin de simplifier et d’automatiser ces mesures d’herbe, et ainsi contribuer au maintien voire au développement du pâturage, le projet HERDECT s’est attaché à construire des méthodes d’estimation de la biomasse des prairies à partir d’outils de télédétection (d’acquisition à distance) et à en estimer la faisabilité opérationnelle.
La diminution du nombre de prairies, que l’on observe à l’échelle mondiale depuis plusieurs décennies, s’est accompagnée de l’évolution de leur mode de gestion dans un contexte d’intensification de l’usage des terres. Face aux enjeux que ces changements impliquent, tant sur le plan environnemental qu’économique, il est nécessaire d’identifier et de caractériser les dynamiques spatiotemporelles des prairies, afin notamment d’évaluer les impacts du changement climatique sur ces dernières et leur capacité à s’y adapter.
Le drone est un outil de plus en plus utilisé dans de nombreux domaines et en particulier en agriculture. La méthode présentée permet d’estimer la hauteur de plantes fourragères à partir de photos prises d’un drone. Cette méthode revêt un intérêt tout particulier pour la sélection végétale.