Weeds are among the most harmful abiotic factors in agriculture, triggering significant yield loss worldwide. Remote sensing can detect and map the presence of weeds in various spectral, spatial, and temporal resolutions. This review aims to show the current and future trends of UAV applications in weed detection in the crop field. This study systematically searched the original articles published from 1 January 2016 to 18 June 2021 in the databases of Scopus, ScienceDirect, Commonwealth Agricultural Bureaux (CAB) Direct, and Web of Science (WoS) using Boolean string: “weed” AND “Unmanned Aerial Vehicle” OR “UAV” OR “drone”. Out of the papers identified, 144 eligible studies did meet our inclusion criteria and were evaluated. Most of the studies (i.e., 27.42%) on weed detection were carried out during the seedling stage of the growing cycle for the crop. Most of the weed images were captured using red, green, and blue (RGB) camera, i.e., 48.28% and main classification algorithm was machine learning techniques, i.e., 47.90%. This review initially highlighted articles from the literature that includes the crops’ typical phenology stage, reference data, type of sensor/camera, classification methods, and current UAV applications in detecting and mapping weed for different types of crop. This study then provides an overview of the advantages and disadvantages of each sensor and algorithm and tries to identify research gaps by providing a brief outlook at the potential areas of research concerning the benefit of this technology in agricultural industries. Integrated weed management, coupled with UAV application improves weed monitoring in a more efficient and environmentally-friendly way. Overall, this review demonstrates the scientific information required to achieve sustainable weed management, so as to implement UAV platform in the real agricultural contexts.
In this paper, we present an overview of several challenges in arable farming that are well suited for research by the control engineering society. We discuss the global needs that these challenges are related to as well as the relation...
While there is a lot of literature from a natural or technical sciences perspective on different forms of digitalization in agriculture (big data, internet of things, augmented reality, robotics, sensors, 3D printing, system integration, ubiquitous connectivity, artificial intelligence, digital twins,...
Digitalization of agriculture may be a solution to feed a huge growing population in the future. Application of big data is a key tool to digitalize the agriculture sector. Though there is a long debate on its applicability to agriculture,...
In this paper, results from a study on the use of improved coffee production technology schemes among smallholder coffee producers in three prominent coffee producing regions in Honduras are presented. The impact of various schemes (trajectories) in which different agents...
Mixed family farms produce almost half of the world food. Increasing food supply in developing countries requires increasing productivity of both land and farmers’ labour as key to increase household income, food security and reduce poverty. A research project developed...