The field of precision agriculture increasingly utilize and develop robotics for various applications, many of which are dependent on high accuracy localization and attitude estimation. Special attention has been put towards full attitude estimation by low-cost sensors, in relation to the development of an autonomous field robot. Quaternions have been chosen due to its continuous nature, and with respect to applications in the pipeline with on other platforms. The performance and complexity of two approaches to attitude estimation has been investigated: One Multiplicative Extended Kalman Filter (MEKF) and one non-linear observer. Both were implemented on an ARM Cortex M3 microcontroller with sensors for a Attitude Heading Reference System (AHRS), and benchmarked towards a relative high grade commercial AHRS device. The relative computational burden of the MEKF have been underlined, by execution times more than 10 times those of the non-linear estimator. The implementation complexity is also significantly lower for the non-linear observer, which facilitate test and verification through more transparent software.
This paper, presented at the 12th European IFSA Symposium (Workshop: "Generating spaces for innovation in agricultural and rural development") in 2016, aims to summarise the main features of the AgriSpin project. The project is being financed by the Horizon 2020...
In the AgriSpin project (2015-2017) fifteen organisations involved in innovation support tried to understand better how each of them made a difference in helping farmers to innovate. In principle, each partner organisation hosted a Cross Visits of 3 – 4...
L’une des avancées les plus importantes dans le domaine de l’observation de la terre est la découverte des indices spectraux, ils ont notamment prouvé leur efficacité dans la caractérisation des surfaces agricoles, mais ils sont généralement définis de manière empirique....
For an intelligent agricultural robot to reliably operate on a large-scale farm, it is crucial to accurately estimate its pose. In large outdoor environments, 3D LiDAR is a preferred sensor. Urban and agricultural scenarios are characteristically different, where the latter...
The European Innovation Partnership for agricultural productivity and sustainability (EIP-AGRI), which can be perceived as a platform based on interaction among farmers, researchers, and advisors/extensionists, represents a useful tool for a better understanding of applied innovation processes. Grounded in the...