Digitalisation is an integral part of modern agriculture. Several digital technologies are available for different animal species and form the basis for precision livestock farming. However, there is a lack of clarity as to which digital technologies are currently used in agricultural practice. Thus, this work aims to present for the first time the status quo in Swiss livestock farming as an example of a highly developed, small-scale and diverse structured agriculture. In this context, the article focuses on the adoption of electronic sensors and measuring devices, electronic controls and electronic data-processing options and the usage of robotics in ruminant farming, namely, for dairy cattle, dairy goats, suckler cows, beef cattle and meat-sheep. Furthermore, the use of electronic ear tags for pigs and the smartphone usage for barn monitoring on poultry farms was assessed. To better understand the adoption process, farm and farmer’s characteristics associated with the adoption of (1) implemented and (2) new digital technologies in ruminant farming were assessed using regression analyses, which is classified at a 10% adoption hurdle. The results showed clear differences in the adoption rates between different agricultural enterprises, with both types of digital technologies tending to be used the most in dairy farming. Easy-to-use sensors and measuring devices such as those integrated in the milking parlour were more widespread than data processing technologies such as those used for disease detection. The husbandry system further determined the use of digital technologies, with the result that farmers with tie stall barns were less likely to use digital technologies than farmers with loose housing systems. Additional studies of farmers’ determinants and prospects of implementation can help identify barriers in the adoption of digital technologies.
The spatial and temporal variability of soil properties (fluid composition, structure, and water content) and hydrogeological properties employed for sustainable precision agriculture can be obtained from geoelectrical resistivity methods. For sustainable precision agricultural practices, site-specific information is paramount, especially during...
The digital transformation in agriculture introduces new challenges in terms of data, knowledge and technology adoption due to critical interoperability issues, and also challenges regarding the identification of the most suitable data sources to be exploited and the information models...
In creating a usable Information System (IS), the quality of information is crucial for making the right decisions. Although, many Information Quality (IQ) features have been identified in a broader context, only certain IQ features would become applicable for each...
Accurate and timely crop mapping is crucial for environment assessment, food security and agricultural production. However, for the areas with high landscape heterogeneity and frequent cloudy and rainy weather, the insufficient high-quality satellite images limit the accuracy of crop classification....
The privatization of agricultural advisory and extension services in many countries and the associated pluralism of service providers has renewed interest in farmers’ use of fee-for-service advisors. Understanding farmers’ use of advisory services is important, given the role such services...