The prevalence of “grass-fed” labeled food products on the market has increased in recent years, often commanding a premium price. To date, the majority of methods used for the authentication of grass-fed source products are driven by auditing and inspection of farm records. As such, the ability to verify grass-fed source claims to ensure consumer confidence will be important in the future. Mid-infrared (MIR) spectroscopy is widely used in the dairy industry as a rapid method for the routine monitoring of individual herd milk composition and quality. Further harnessing the data from individual spectra offers a promising and readily implementable strategy to authenticate the milk source at both farm and processor levels. Herein, a comprehensive comparison of the robustness, specificity, and accuracy of 11 machine-learning statistical analysis methods were tested for the discrimination of grass-fed versus non-grass-fed milks based on the MIR spectra of 4,320 milk samples collected from cows on pasture or indoor total mixed ration–based feeding systems over a 3-yr period. Linear discriminant analysis and partial least squares discriminant analysis (PLS-DA) were demonstrated to offer the greatest level of accuracy for the prediction of cow diet from MIR spectra. Parsimonious strategies for the selection of the most discriminating wavelengths within the spectra are also highlighted.
Sorghum crop is grown under tropical and temperate latitudes for several purposes including production of health promoting food from the kernel and forage and biofuels from aboveground biomass. One of the concerns of policy-makers and sorghum growers is to cost-effectively...
Pour accompagner les efforts d’adaptation au changement climatique couplé à la rareté des ressources en eau et promouvoir une agriculture durable à forte valeur ajoutée, la TIL est l'un des moyens les plus significatifs pour améliorer la productivité de l'eau...
In this paper, introduction presents the problem statement. The second chapter gives a brief description of the Smart Farming system. The third chapter provides an overview of ontologies. The fourth chapter describes implementation of the knowledge base in the Smart...
This paper examines the impact of mobile phones on farmers’ marketing decisions and prices they receive based on household- and village-level information collected from rural Ethiopia. It explains the reason for the weak impact of mobile phones observed in this...
Large-scale agriculture is increasing in anthropogenically modified areas in the Amazon Basin. Crops such as soybean, maize, oil palm, and others are being introduced to supply the world demand for food and energy. However, the current challenge is to enhance...