The impact of global warming on crop growth periods and yields has been evaluated by using crop models, which need to provide various kinds of input datasets and estimate numerous parameters before simulation. Direct studies on the changes of climatic factors on the observed crop growth and yield could provide a more simple and intuitive way for assessing the impact of climate change on crop production. In this study, four cultivars which were planted over more than 15 years in eight test stations in the Northern Winter Wheat Region of China were selected to investigate the relationships between growth periods, grain yields, yield components and temperatures. It was found that average temperatures and heat degree-days (HDD) during the winter wheat growing seasons tended to increase over time series at most study sites. The length of growth period and growing degree days (GDD) were not fixed for a given cultivar among different years and locations, and the variation on the periods from sowing to jointing was relatively greater than in the other periods. The increasing temperature mainly shortened the periods from sowing to jointing and jointing to anthesis, which led to the decrease in entire growth periods. Positive relationships between spike number, grain number per spike, grain yields and average temperatures were identified in the Northern Winter Wheat Region of China. The grain yield in the study area increased by 406.3 kg ha 1 for each 1 C increase in average temperature. Further, although the positive relationship between grain yield and HDD was found in our study, the heat stress did not lead to the wheat yield decline in the study region. Temperature is a major determinant of wheat growth and development, the average temperature and the frequency of heat stresses are projected to increase in the future, so understanding the effect of temperature on wheat production and adopting appropriate adaptation are required for the implementation of food security policies.
Continually increasing food demand from a still–growing human population and the need for environmentally–friendly strategies for sustainable agricultural development require innovation and further enhancement of cropping systems’ factor productivity. The system of rice intensification (SRI) has been proposed as a...
Agricultural production is a crucial and fundamental aspect of a stable society in China that depends heavily on the climate situation. With the desire to achieve future sustainable development, China’s government is taking actions to adapt to climate change and...
There is an ongoing debate on what constitutes sustainable intensification of agriculture (SIA). In this paper, we propose that a paradigm for sustainable intensification can be defined and translated into an operational framework for agricultural development. We argue that this...
The objective of this paper is to review both supply- and demand-side measures for climate-smart agriculture and discuss their interlinkages, trade-offs, and context- and site-specific validity. The literature reviewed focuses on studies during the last decade (2008–2017) addressing food- and...
Increasing on-farm production diversity and improving markets are recognized as ways to improve the dietary diversity of smallholders. Using instrumental variable methods to account for endogeneity, this paper studies the interplay of production diversity, markets and diets in the context of seasonality...