Research, extension, and advisory services are some of the most knowledge-intensive elements of agricultural innovation systems. They are also among the heaviest users of information communication technologies (ICTs). This module introduces ICT developments in the wider innovation and knowledge systems as well as explores drivers of ICT use in research and extension.
This study explores the properties of innovation systems and their contribution to increased eco-efficiency in agriculture. Using aggregate data and econometric methods, the eco-efficiency of 79 countries was computed and a range of factors relating to research, extension, business and policy was examined. Despite data limitations, the analysis produced significant results.
This paper presents the common framework on CD for AIS developed by TAP and points to the relevance of meta-learning and the importance of “functional capacities”, if higher education institutions and their graduates are to become active players in the agricultural innovation system. The Framework was developed through an inclusive, participatory and multi-stakeholders approach with contributions by TAP Partners, including FARA and the Global Conference on Higher Education and Research in Agriculture.
This study explores the properties of innovation systems and their contribution to increased eco-efficiency in agriculture. Using aggregate data and econometric methods, the eco-efficiency of 79 countries was computed and a range of factors relating to research, extension, business and policy was examined. Despite data limitations, the analysis produced some interesting insights. For instance public research spending has a positive significant effect for emerging economies, while no statistically significant effect was found for foreign aid for research.
Agricultural innovation is an essential component in achieving the SDG and accelerating the transition to more sustainable and resilient farming systems across the world. Innovations generally emerge from collective intelligence and action, which requires effective agricultural innovation systems (AIS). An AIS perspective has been widely adopted, but the analysis of AIS, especially at country level, remains a challenge. The need for and potential of a diagnostic tool for AIS analysis is currently receiving attention in the global agricultural policy debate.
Agricultural innovation systems has become a popular approach to understand and facilitate agricultural in-novation. However, there is often no explicit reflection on the role of agricultural innovation systems in food systems transformation and how they relate to transformative concepts and visions (e.g. agroecology, digital agriculture, Agriculture 4.0, AgTech and FoodTech, vertical agriculture, protein transitions). To support such reflection we elaborate on the importance of a mission-oriented perspective on agricultural innovation systems.
The latest comprehensive research agenda in the Journal of Agricultural Education and Extension was published in 2012 (Faure, Desjeux, and Gasselin 2012), and since then there have been quite some developments in terms of biophysical, ecological, climatological, social, political and economic trends that impact farming and the transformation of agriculture and food systems at large as well as new potentially disruptive technologies.
This book chapter reviews the literature on agricultural innovation, with the threefold goal of (1) sketching the evolution of systemic approaches to agricultural innovation and unravelling the different interpretations; (2) assessing key factors for innovation system performance and demonstrating the use of system thinking in the facilitation of processes of agricultural innovation by means of innovation brokers and reflexive process monitoring; and (3) formulating an agenda for future research.
This thematic note discusses the role of innovation brokers in bridging communication gaps between various actors of innovation systems. On the basis of recent experience in the Netherlands, it outlines the success of brokers in finding solutions adapted to the needs of farmers and industry, and thus their positive impact on innovation adoption. This section also examines some issues on how brokers function, particularly with regard to balancing interests, funding their activities, and the role of government.
The process of knowledge brokering in the agricultural sector, where it is generally called agricultural extension, has been studied since the 1950s. While agricultural extension initially employed research push models, it gradually moved towards research pull and collaborative research models. The current agricultural innovation systems perspective goes beyond seeing research as the main input to change and innovation, and recognises that innovation emerges from the complex interactions among multiple actors and is about fostering combined technical, social and institutional change.