A range of approaches and financial instruments have been used to stimulate and support innovation in agriculture and resolve interlocking constraints for uptake at scale. These include innovation platforms, results-based payments, value chain approaches, grants and prizes, incubators, participatory work with farmer networks, and many more.
Innovation for sustainable agricultural intensification (SAI) is challenging. Changing agricultural systems at scale normally means working with partners at different levels to make changes in policies and social institutions, along with technical practices. This study extracts lessons for practitioners and investors in innovation in SAI, based on concrete examples, to guide future investment.
A huge increase in investment in innovation for agricultural systems is critical to meet the Sustainable Development Goals and Paris Climate Agreement. Most of this increase needs to come from reorienting existing funding for innovation. However, understanding whether an investment will fully promote environmentally sustainable and equitable agri-food systems can be difficult.
Finance is a key lever for turning agriculture from a potential source of environmental harm and social inequity to a driver of conservation and social inclusiveness. Private and public sector funding for farmers to combat climate change and protect and restore nature (‘Paying for Nature’) is rapidly increasing. Yet this new funding may not reach its aims without drastically improving farm-level reward mechanisms.
By 2050, it is projected that nearly 70% of the global population will live in urban areas – up from 55% today. How can towns and cities be fed sustainably? And what does this urban growth mean for innovation priorities? A study of urban and peri-urban agriculture (UPA), commissioned by CoSAI, addressed these questions.
Controlled Environment Agriculture (CEA) is the production of plants, fish, insects or animals inside structures, such as greenhouses and buildings, in controlled conditions. In a rapidly urbanizing world, CEA can contribute to sustainable development, e.g. through reduced use of land, water and inputs. There is a need for innovation in policy, technology and business practices to scale up CEA in the Global South sustainably and equitably
This paper investigates the introduction of Integrated Pest Management (IPM) in Canino's area (Italy), from an agricultural innovation system (AIS) perspective focusing on the roles of the innovation actors and the innovation impact pathway. The IPM research in Canino was conducted with a wide range of actors including research, advisory services, producer cooperatives and the private sector in a favourable policy environment facilitating the fast and wide adoption of IPM.
The paper, prepared for the "High Level Policy Dialogue on Investment in Agricultural Research for Sustainable Development in Asia and the Pacific" (Bangkok Thailand; 8-9 December 2015), presents the Common Framework on Capacity Development for Agricultural Innovation Systems (CDAIS).The framework is a core component of the Action Plan of the TAP, a G20 Initiative, aiming to increase coherence and effectiveness of capacity development for agricultural innovation that lead to sustainable change and impact at scale.
Agriculture is crucial for the livelihood of millions of people worldwide and is one of the main drivers of deforestation, biodiversity loss and resource degradation. The contribution of agriculture to these environmental problems has been exacerbated by subsidies, which constitute the dominant public policy to support farmers. At the same time, other economic instruments introducing more sustainable land-use practices and incentivizing better environmental and social outcomes are already being applied worldwide.
The study was designed to answer the following three key questions:
(1) What types of investment instruments have been tested to support innovation in agri-food systems in the Global South, and how can these be categorized into a working typology?
(2) What is the evidence on how well different instruments have supported SAI's multiple objectives (e.g. social equality and environmental) at scale and what contextual and design factors affect their success or failure in achieving these objectives (e.g. type of value chain, who participates)?