This paper reviews the empirical literature on the determinants of farmer adoption of sustainable intensification technologies in maize agri-food systems of the Global South. The attributes of the technology and the dissemination institutions interact with farm/farmer-specific variables, leading to heterogeneous impacts, making the prediction of technology adoption challenging.
Soil texture is a key soil property influencing many agronomic practices including fertilization and liming. Therefore, an accurate estimation of soil texture is essential for adopting sustainable soil management practices. In this study, we used different machine learning algorithms trained on vis–NIR spectra from existing soil spectral libraries (ICRAF and LUCAS) to predict soil textural fractions (sand–silt–clay %). In addition, we predicted the soil textural groups (G1: Fine, G2: Medium, and G3: Coarse) using routine chemical characteristics as auxiliary.
This guide explains how to operationalize inclusion of women, Indigenous Peoples and other under-represented groups in multi-stakeholder forums (MSFs).
This paper assesses the relationships between women’s dietary diversity and various indicators of agricultural biodiversity in farms of the Hauts-Bassins, a cotton-growing region in rural western Burkina Faso. A sample of 579 farms representative of the region was surveyed at three different periods of the year. Using a qualitative 24-h dietary recall, we computed a women’s dietary diversity score (WDDS-10) based on ten food groups.
Recent Society 5.0 efforts by the Government of Japan are aimed at establishing a sustainable human-centered society by combining new technologies such as sensor networks, edge computing, Internet of Things (IoT) ecosystems, artificial intelligence (AI), big data, and robotics. Many research works have been carried out with an increasing emphasis on the fundamentals of wireless sensor networks (WSN) for different applications; namely precision agriculture, environment, medical care, security, and surveillance.
Weeds are among the most harmful abiotic factors in agriculture, triggering significant yield loss worldwide. Remote sensing can detect and map the presence of weeds in various spectral, spatial, and temporal resolutions. This review aims to show the current and future trends of UAV applications in weed detection in the crop field.
Rice is a primary food for more than three billion people worldwide and cultivated on about 12% of the world’s arable land. However, more than 88% production is observed in Asian countries, including Pakistan. Due to higher population growth and recent climate change scenarios, it is crucial to get timely and accurate rice yield estimates and production forecast of the growing season for governments, planners, and decision makers in formulating policies regarding import/export in the event of shortfall and/or surplus.
This document presents a proposed methodology for public expenditure review and analysis for climate change adaptation and mitigation in the agriculture sector (PERCC) and its application to a case study of Kenya. It starts by explaining the basic methodological concepts, classification and labelling of public expenditures that allow for calculating spending in agriculture related to climate change adaptation and mitigation.
Given its superior importance of digital agricultural solutions to overcome challenges in agricultural activities, many of the solutions are in face of challenges to scale in Sub-Saharan Africa (SSA).
We present a model for research and development (R&D) investment in food innovations based on new plant engineering techniques (NPETs) and traditional hybridization methods. The framework combines uncertain and costly food innovation with consumers' willingness to pay (WTP) for the new food. The framework is applied with elicited WTP of French and US consumers for new improved apples. NPETs may be socially beneficial under full information and when the probability of success under NPETs is relatively high. Otherwise, the traditional hybridization is socially optimal.