This study has been produced with the overall goal to document and analyse exisiting best practices in the field of RWHI management in sub-Saharan Africa, with a special focus on Ethiopia, Kenya, Mozambique and Zimbabwe. This is meant to determine the suitability of RWHI management under multivariate biophysical and socioeconomic conditions. The best practices include specific information and know-how on the performance, cost-efficiency and impacts of RWHI technologies.
These recommendations are a compilation of 2 regional studies at sub-Saharan Africa level which focused on research and technology transfer in the field of rainwater harvesting irrigatio nmanagement on one hand (section 3), and effective policy recommendations on the use of rainwater for off-season small-scale irrigation on the other (section 4). The regional studies upon which this transnational study is based come from the analysis of national studies in Ethiopia, Kenya, Mozambique and Zimbabwe.
These training materials have been produced to foster the capacity of key members of local communities to practically implement RWHI systems in a cost-efficient manner. The specific target group of these capacity building materials are local community members who are directly involved in the replication and scale-up of RWHI technologies and practices, i.e.
The evidence base on agri-food systems is growing exponentially. The CoSAI-commissioned study, Mining the Gaps, applied artificial intelligence to mine more than 1.2 million publications for data, creating a clearer picture of what research has been conducted on small-scale farming and post-production systems from 2000 to the present, and where evidence gaps exist.
A range of approaches and financial instruments have been used to stimulate and support innovation in agriculture and resolve interlocking constraints for uptake at scale. These include innovation platforms, results-based payments, value chain approaches, grants and prizes, incubators, participatory work with farmer networks, and many more.
Innovation for sustainable agricultural intensification (SAI) is challenging. Changing agricultural systems at scale normally means working with partners at different levels to make changes in policies and social institutions, along with technical practices. This study extracts lessons for practitioners and investors in innovation in SAI, based on concrete examples, to guide future investment.
A huge increase in investment in innovation for agricultural systems is critical to meet the Sustainable Development Goals and Paris Climate Agreement. Most of this increase needs to come from reorienting existing funding for innovation. However, understanding whether an investment will fully promote environmentally sustainable and equitable agri-food systems can be difficult.
Finance is a key lever for turning agriculture from a potential source of environmental harm and social inequity to a driver of conservation and social inclusiveness. Private and public sector funding for farmers to combat climate change and protect and restore nature (‘Paying for Nature’) is rapidly increasing. Yet this new funding may not reach its aims without drastically improving farm-level reward mechanisms.