This study explores the properties of innovation systems and their contribution to increased eco-efficiency in agriculture. Using aggregate data and econometric methods, the eco-efficiency of 79 countries was computed and a range of factors relating to research, extension, business and policy was examined. Despite data limitations, the analysis produced significant results.
Developing regions' food system has transformed rapidly in the past several decades. The food system is the dendritic cluster of R&D value chains, and the value chains linking input suppliers to farmers, and farmers upstream to wholesalers and processors midstream, to retailers then consumers downstream. This study analyze the transformation in terms of these value chains' structure and conduct, and the effects of changes in those on its performance in terms of impacts on consumers and farmers, as well as the efficiency of and waste in the overall chain.
This study explores the properties of innovation systems and their contribution to increased eco-efficiency in agriculture. Using aggregate data and econometric methods, the eco-efficiency of 79 countries was computed and a range of factors relating to research, extension, business and policy was examined. Despite data limitations, the analysis produced some interesting insights. For instance public research spending has a positive significant effect for emerging economies, while no statistically significant effect was found for foreign aid for research.
The efforts to adapt to climate change in developing countries are in their infancy, and hopefully CSA will be a major contributor to these efforts. But CSA itself is evolving, and there is a growing need to refine and adapt it to the changing realities. This section of the book focus on the implications of the empirical findings for devising effective strategies and policies to support resilience and the implications for agriculture and climate change policy at national, regional and international levels.
Agricultural extension in the Global South can benefit greatly from the use of modern information and communication technologies (ICT). Yet, despite two decades of promising experiences, this potential is not fully realized. Here, it is reviewed the relevant research literature to inform future investments into agricultural information services that harness the full potential of digital media.The study describes a recently emerging innovation agenda that is, in part, a response to the eventualfailure of many new agro-advisory initiatives.
Policy brief No. 1. In recent years, food consumers have become in- creasingly aware of and concerned about the sa- fety of food products. As a response, public and private actors have introduced different standards to ensure that food safety reaches the degree de- manded by consumers. Developing countries often lack the institutional capacities and financial and non-financial resources to comply with standards.
The topics addressed in this book are of vital importance to the survival of humankind. Agricultural biodiversity, encompassing genetic diversity as well as human knowledge, is the base upon which agricultural production has been built, and protecting this resource is critical to ensuring the capacity of current and future generations to adapt to unforeseen challenges.
This paper shows that the current generation of transgenic crop varieties has significant potential to improve economic welfare in low-income countries. These varieties might increase crop yields in low-income countries in cases when pesticides have not been used. They will reduce negative health effects of chemicals when they replace them. With low transaction costs, appropriate infrastructure, and access to intellectual property, multiple varieties of transgenics will be introduced.
For millennia, humans have modified plant genes in order to develop crops best suited for food, fiber, feed, and energy production. Conventional plant breeding remains inherently random and slow, constrained by the availability of desirable traits in closely related plant species. In contrast, agricultural biotechnology employs the modern tools of genetic engineering to reduce uncertainty and breeding time and to transfer traits from more distantly related plants.
Agricultural biotechnology and, specifically, the development of genetically modified (GM) crops have been controversial for several reasons, including concerns that the technology poses potential negative environmental or health effects, that the technology would lead to the (further) corporatization of agriculture, and that it is simply unethical to manipulate life in the laboratory. GM crops have been part of the agricultural landscape for more than 15 years and have now been adopted on more than 170 million hectares (ha) in both developed countries (48%) and developing countries (52%).