The paper uses a stochastic frontier analysis of production functions to estimate the level of technical efficiency in agriculture for a panel of 29 developing countries in Africa and Asia between 1994 and 2000. In addition, the paper examines how different components of an agricultural innovation system interact to determine the estimated technical inefficiencies.The paper has been presented at the Southern Agricultural Economics Association Annual Meeting, Birmingham, AL, February 4-7, 2012.
This study examines the role of public–private partnerships in international agricultural research. It is intended to provide policymakers, researchers, and business decisionmakers with an understanding of how such partnerships operate, how they promote the exchange of knowledge and technology, and how they contribute to poverty reduction.
Despite substantial research on the economic effects of transgenic insect-resistant Bacillus thuringiensis (Bt) cotton, there is still limited work on this technology’s impacts on human health. Due to the inbuilt insect resistance, Bt cotton requires fewer pesticide sprays than conventional cotton, which is not only advantageous from economic and environmental perspectives, but may also result in health benefits for farmers.
The evidence base on agri-food systems is growing exponentially. The CoSAI-commissioned study, Mining the Gaps, applied artificial intelligence to mine more than 1.2 million publications for data, creating a clearer picture of what research has been conducted on small-scale farming and post-production systems from 2000 to the present, and where evidence gaps exist.
A range of approaches and financial instruments have been used to stimulate and support innovation in agriculture and resolve interlocking constraints for uptake at scale. These include innovation platforms, results-based payments, value chain approaches, grants and prizes, incubators, participatory work with farmer networks, and many more.
Innovation for sustainable agricultural intensification (SAI) is challenging. Changing agricultural systems at scale normally means working with partners at different levels to make changes in policies and social institutions, along with technical practices. This study extracts lessons for practitioners and investors in innovation in SAI, based on concrete examples, to guide future investment.
A huge increase in investment in innovation for agricultural systems is critical to meet the Sustainable Development Goals and Paris Climate Agreement. Most of this increase needs to come from reorienting existing funding for innovation. However, understanding whether an investment will fully promote environmentally sustainable and equitable agri-food systems can be difficult.
Finance is a key lever for turning agriculture from a potential source of environmental harm and social inequity to a driver of conservation and social inclusiveness. Private and public sector funding for farmers to combat climate change and protect and restore nature (‘Paying for Nature’) is rapidly increasing. Yet this new funding may not reach its aims without drastically improving farm-level reward mechanisms.