The aim of the study was to strengthen the capacities of the farmers in a participatory process to adapt to climate change. It was assumed that an innovation platform could support generation and exchange of knowledge on climate change, exchange and identification and implementation of options for adaptation tailored to local needs by the participating farmers
This methodological framework is based on Life Cycle Assessment (LCA) and multi-criteria assessment methods. It integrates CSA-related issues through the definition of Principles, Criteria and Indicators, and involves farmers in the assessment of the effects of CSA practices. To reflect the complexity of farming systems, the method proposes a dual level of analysis: the farm and the main cash crop/livestock production system. After creating a typology of the farming systems, the initial situation is compared to the situation after the introduction of a CSA practice.
The shift to industrial agriculture in Europe brought along a range of environmental and social externalities. This led policy makers, researchers and civil servants to consider and explore the potential of diversified farming systems (DFS) to address current problems in agriculture. However, because of multiple obstacles adoption of these DFS by farmers is not obvious. In this study we investigate the case of agroforestry (AF) systems in Flanders, where a government incentive scheme initiated in 2011, did not lead to the expected uptake of AF systems by farmers.
This chapter reports on the different functions fulfilled by existing mechanisms for supporting collective innovation in the agricultural and agrifood sectors in the countries of the Global South in order to identify the potential contributions the research community can make to strengthen them. The authors show that a variety of mechanisms are needed to create enabling conditions for innovation and to provide a step-by-step support to innovation communities, according to their capacities and learning needs.