While the Agricultural Science and Technology Indicators (ASTI) initiative provides data and analysis of domestic public and private spending on agricultural research and development for a wide range of developing countries, the literature pays little attention, if any, to foreign assistance to agricultural, fishing and forestry research and agricultural extension. The objective of the present study is to fill this gap.
Agricultural innovation in low-income tropical countries contributes to a more effective and sustainable use of natural resources and reduces hunger and poverty through economic development in rural areas. Yet, despite numerous recent public and private initiatives to develop capacities for agricultural innovation, such initiatives are often not well aligned with national efforts to revive existing Agricultural Innovation Systems (AIS).
Research, extension, and advisory services are some of the most knowledge-intensive elements of agricultural innovation systems. They are also among the heaviest users of information communication technologies (ICTs). This module introduces ICT developments in the wider innovation and knowledge systems as well as explores drivers of ICT use in research and extension.
This study explores the properties of innovation systems and their contribution to increased eco-efficiency in agriculture. Using aggregate data and econometric methods, the eco-efficiency of 79 countries was computed and a range of factors relating to research, extension, business and policy was examined. Despite data limitations, the analysis produced significant results.
The study focuses on how levels of innovation, measured by complexity and investments requirements of the adopted technologies, relates to innovative behavior and complying with social responsibility practices, as two indicators of the farmer's behavior towards innovation. A typology of farmers with different technological
levels was constructed based on multivariate techniques, according to the adoption of seven technologies. The main objective of the study was to relate SR and innovative behavior to the technology clusters
This paper presents the common framework on CD for AIS developed by TAP and points to the relevance of meta-learning and the importance of “functional capacities”, if higher education institutions and their graduates are to become active players in the agricultural innovation system. The Framework was developed through an inclusive, participatory and multi-stakeholders approach with contributions by TAP Partners, including FARA and the Global Conference on Higher Education and Research in Agriculture.
On-farm agricultural innovation through incorporation of new technologies and practices requires access to resources such as knowledge, financial resources, training, and even emotional support, all of which require the support of different actors such as peers, advisors, and researchers. The literature has explored the support networks that farmers use and the overall importance ranking of different support actors, but it has not looked in detail at how these networks may differ for different farmers.
This study explores the properties of innovation systems and their contribution to increased eco-efficiency in agriculture. Using aggregate data and econometric methods, the eco-efficiency of 79 countries was computed and a range of factors relating to research, extension, business and policy was examined. Despite data limitations, the analysis produced some interesting insights. For instance public research spending has a positive significant effect for emerging economies, while no statistically significant effect was found for foreign aid for research.
Agricultural innovation is an essential component in achieving the SDG and accelerating the transition to more sustainable and resilient farming systems across the world. Innovations generally emerge from collective intelligence and action, which requires effective agricultural innovation systems (AIS). An AIS perspective has been widely adopted, but the analysis of AIS, especially at country level, remains a challenge. The need for and potential of a diagnostic tool for AIS analysis is currently receiving attention in the global agricultural policy debate.
This paper investigates the introduction of Integrated Pest Management (IPM) in Canino's area (Italy), from an agricultural innovation system (AIS) perspective focusing on the roles of the innovation actors and the innovation impact pathway. The IPM research in Canino was conducted with a wide range of actors including research, advisory services, producer cooperatives and the private sector in a favourable policy environment facilitating the fast and wide adoption of IPM.