The development of effective agricultural monitoring networks is essential to track, anticipate and manage changes in the social, economic and environmental aspects of agriculture. The authors welcome the perspective of Lindenmayer and Likens (J. Environ. Monit., 2011, 13, 1559) as published in the Journal of Environmental Monitoring on their earlier paper, “Monitoring the World's Agriculture” (Sachs et al., Nature, 2010, 466, 558–560).
The organization of the Nutrition Innovation Labs represents a novel model for focusing U.S.- supported research on food and nutrition issues in developing countries. Their aims are to discover how policy and program interventions can most effectively achieve large-scale improvements in maternal and child nutrition, particularly by leveraging agriculture and build human and institutional capacity for applied policy analysis, research and program implementation.
The Feed the Future Innovation Lab for Collaborative Research on Grain Legumes (Legume Innovation Lab; LIL), supports ten multi-disciplinary collaborative research and institutional capacity strengthening subcontracted projects working in 13 Feed the Future countries in Africa and Central America and the Caribbean involving scientists at 10 US universities, 3 USDA/ARS research centers, and 23 developing country national agriculture research systems and universities.
Developing regions' food system has transformed rapidly in the past several decades. The food system is the dendritic cluster of R&D value chains, and the value chains linking input suppliers to farmers, and farmers upstream to wholesalers and processors midstream, to retailers then consumers downstream. This study analyze the transformation in terms of these value chains' structure and conduct, and the effects of changes in those on its performance in terms of impacts on consumers and farmers, as well as the efficiency of and waste in the overall chain.
The efforts to adapt to climate change in developing countries are in their infancy, and hopefully CSA will be a major contributor to these efforts. But CSA itself is evolving, and there is a growing need to refine and adapt it to the changing realities. This section of the book focus on the implications of the empirical findings for devising effective strategies and policies to support resilience and the implications for agriculture and climate change policy at national, regional and international levels.
The topics addressed in this book are of vital importance to the survival of humankind. Agricultural biodiversity, encompassing genetic diversity as well as human knowledge, is the base upon which agricultural production has been built, and protecting this resource is critical to ensuring the capacity of current and future generations to adapt to unforeseen challenges.
This paper shows that the current generation of transgenic crop varieties has significant potential to improve economic welfare in low-income countries. These varieties might increase crop yields in low-income countries in cases when pesticides have not been used. They will reduce negative health effects of chemicals when they replace them. With low transaction costs, appropriate infrastructure, and access to intellectual property, multiple varieties of transgenics will be introduced.
For millennia, humans have modified plant genes in order to develop crops best suited for food, fiber, feed, and energy production. Conventional plant breeding remains inherently random and slow, constrained by the availability of desirable traits in closely related plant species. In contrast, agricultural biotechnology employs the modern tools of genetic engineering to reduce uncertainty and breeding time and to transfer traits from more distantly related plants.
Agricultural biotechnology and, specifically, the development of genetically modified (GM) crops have been controversial for several reasons, including concerns that the technology poses potential negative environmental or health effects, that the technology would lead to the (further) corporatization of agriculture, and that it is simply unethical to manipulate life in the laboratory. GM crops have been part of the agricultural landscape for more than 15 years and have now been adopted on more than 170 million hectares (ha) in both developed countries (48%) and developing countries (52%).
This article presents lessons from the rich adoption literature for the nascent research on adaptation. Individuals' adoption choices are affected by profit and risk considerations and by credit and biophysical constraints. New technologies spread gradually, reflecting heterogeneity among potential adopters, processes of learning and technological improvement, and policies and institutions. Adaptation is the response of economic agents and societies to major shocks. We distinguish between reactive and proactive adaptation.