Numerous innovation platforms have been implemented to encourage the adoption of agricultural innovations and stakeholder interactions within a value chain. Yet little research has been undertaken on the design and implementation of innovation platforms focussing on issues other than market access and aiming to encourage agro-ecological intensification.
The aim of the study was to strengthen the capacities of the farmers in a participatory process to adapt to climate change. It was assumed that an innovation platform could support generation and exchange of knowledge on climate change, exchange and identification and implementation of options for adaptation tailored to local needs by the participating farmers
This methodological framework is based on Life Cycle Assessment (LCA) and multi-criteria assessment methods. It integrates CSA-related issues through the definition of Principles, Criteria and Indicators, and involves farmers in the assessment of the effects of CSA practices. To reflect the complexity of farming systems, the method proposes a dual level of analysis: the farm and the main cash crop/livestock production system. After creating a typology of the farming systems, the initial situation is compared to the situation after the introduction of a CSA practice.
Climate-smart agriculture (CSA) is an approach to help agricultural systems worldwide, concurrently addressing three challenge areas: increased adaptation to climate change, mitigation of climate change, and ensuring global food security – through innovative policies, practices, and financing. It involves a set of objectives and multiple transformative transitions for which there are newly identified knowledge gaps. We address these questions raised by CSA within three areas: conceptualization, implementation, and implications for policy and decision-makers.
The evidence base on agri-food systems is growing exponentially. The CoSAI-commissioned study, Mining the Gaps, applied artificial intelligence to mine more than 1.2 million publications for data, creating a clearer picture of what research has been conducted on small-scale farming and post-production systems from 2000 to the present, and where evidence gaps exist.
A range of approaches and financial instruments have been used to stimulate and support innovation in agriculture and resolve interlocking constraints for uptake at scale. These include innovation platforms, results-based payments, value chain approaches, grants and prizes, incubators, participatory work with farmer networks, and many more.
Innovation for sustainable agricultural intensification (SAI) is challenging. Changing agricultural systems at scale normally means working with partners at different levels to make changes in policies and social institutions, along with technical practices. This study extracts lessons for practitioners and investors in innovation in SAI, based on concrete examples, to guide future investment.
A huge increase in investment in innovation for agricultural systems is critical to meet the Sustainable Development Goals and Paris Climate Agreement. Most of this increase needs to come from reorienting existing funding for innovation. However, understanding whether an investment will fully promote environmentally sustainable and equitable agri-food systems can be difficult.